(x^2+50)+(-2x+10)+40=180

Simple and best practice solution for (x^2+50)+(-2x+10)+40=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2+50)+(-2x+10)+40=180 equation:



(x^2+50)+(-2x+10)+40=180
We move all terms to the left:
(x^2+50)+(-2x+10)+40-(180)=0
We add all the numbers together, and all the variables
(x^2+50)+(-2x+10)-140=0
We get rid of parentheses
x^2-2x+50+10-140=0
We add all the numbers together, and all the variables
x^2-2x-80=0
a = 1; b = -2; c = -80;
Δ = b2-4ac
Δ = -22-4·1·(-80)
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{324}=18$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-18}{2*1}=\frac{-16}{2} =-8 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+18}{2*1}=\frac{20}{2} =10 $

See similar equations:

| -5=-4x+42÷6 | | 3/147=6/xx= | | 57=x-25 | | 3m-5=7+2m | | 22=-7p-4p | | −2a^2−2a−3=-4a^2 | | 3/147=6/x | | -10n+5=65 | | 8.6=3x-3.4 | | 55+60+2x+5=180 | | x-32=049 | | 18=5x-2x+3 | | 5/75=20/x | | 9x3=26 | | 18=x/9+5 | | (3xx4)=68+26 | | −6=5+x | | 2y+4(2y+1)=34 | | 4. 18=5x-2x+3 | | 13k-12k+4k=15 | | −9+4x,x=-2 | | 3.5/4=x/10 | | -5=3z-14 | | 5/75=20/xx= | | 4x2+3x-12=0 | | -6-2z=-5-2z | | 6(2y−9)=-42−42 | | 70=5x+7x+10 | | 88=–8(y–3) | | 5x–8+2x=27 | | -2x+4(-2x+7)=22 | | 2-5k=13 |

Equations solver categories